Conversion stages
- Write the decimal fraction as a fraction of the digits to the right of the decimal period (numerator) and a power of 10 (denominator).
- Find the greatest common divisor (gcd) of the numerator and the denominator.
- Reduce the fraction by dividing the numerator and the denominator with the gcd.
Example #1
Convert 0.32 to fraction:
0.32 = 32/100
Find the greatest common divisor (gcd) of the numerator and the denominator:
gcd(32,100) = 4
Reduce the fraction by dividing the numerator and the denominator with the gcd:
0.32 = (32/4) / (100/4) = 8/25
Example #2
Convert 2.56 to fraction:
2.56 = 2+56/100
Find the greatest common divisor (gcd) of the numerator and the denominator:
gcd(56,100) = 4
Reduce the fraction by dividing the numerator and the denominator with the gcd:
2+56/100 = 2 + (56/4) / (100/4) = 2+14/25
Example #3
Convert 0.124 to fraction:
0.124 = 124/1000
Find the greatest common divisor (gcd) of the numerator and the denominator:
gcd(124,1000) = 4
Reduce the fraction by dividing the numerator and the denominator with the gcd:
0.124 = (124/4) / (1000/4) = 31/250
How to convert repeating decimal to fraction
Example #1
Convert 0.333333... to fraction:
x = 0.333333...
10x = 3.333333...
10x - x = 9x = 3
x = 3/9 = 1/3
Example #2
Convert 0.0565656... to fraction:
x = 0.0565656...
100x = 5.6565656...
100x - x = 99x = 5.6
990x = 56
x = 56/990 = 28/495
Decimal to fraction conversion table
Decimal | Fraction |
---|---|
0.001 | 1/1000 |
0.01 | 1/100 |
0.1 | 1/10 |
0.11111111 | 1/9 |
0.125 | 1/8 |
0.14285714 | 1/7 |
0.16666667 | 1/6 |
0.2 | 1/5 |
0.22222222 | 2/9 |
0.25 | 1/4 |
0.28571429 | 2/7 |
0.3 | 3/10 |
0.33333333 | 1/3 |
0.375 | 3/8 |
0.4 | 2/5 |
0.42857143 | 3/7 |
0.44444444 | 4/9 |
0.5 | 1/2 |
0.55555555 | 5/9 |
0.57142858 | 4/7 |
0.625 | 5/8 |
0.66666667 | 2/3 |
0.6 | 3/5 |
0.7 | 7/10 |
0.71428571 | 5/7 |
0.75 | 3/4 |
0.77777778 | 7/9 |
0.8 | 4/5 |
0.83333333 | 5/6 |
0.85714286 | 6/7 |
0.875 | 7/8 |
0.88888889 | 8/9 |
0.9 | 9/10 |
Decimal to fraction converter ►